
Setting up a web
server
Wed 14 August 2019
By misschienaasappel

Introduction

Ever wanted to host your own website from
the comfort of your house? Ever wondered
how to achieve this? Search no further! This
guide will help you with the installation and
configuration of web server software, which is
what allows a computer to start handling
HTTP requests and serve web content in
response.

Besides helping you with the installation, this
guide will help you getting the right
certificates, configuring your server and
publishing your homebrew served website.

Some background
knowledge

First off: what is the web, what is a web site
and what is a web server?

The web is the single most known part of the
internet. Because of that, it often happens that
‘the web’ and ‘the internet’ become conflated.
Therefore, it often becomes a bit hazy to state
what the difference is between the internet
and the web.
Generally speaking ‘the web’ is only the part
of the internet that we interact with with a
web browser. More technically speaking, the
web is the part of the internet that runs on
port 80 and port 443 and that uses the HTTP
and HTTPS protocols.

Websites are text documents that are
formatted through HTML, CSS and JS. These
three technologies tell the web browser what
the structure of the page is, how it should be
laid out and what kind of interactions are
possible. Websites are transmitted using
Hyper Text Transfer Protocol, which is why we
usually type them like so http://

homebrewserver.club .

A web server is a piece of software which
listens for and responds to HTTP requests.

So in essence the web is a network of
webservers which runs on top of the internet
and through which websites can be retrieved.

Homebrewserver.club

Requirements

• A spare computer.
• A basic understanding of the command line.
• An ssh server and client (demystifying-

ssh.html) installed.
• A registered domain name (https://

computer.howstuffworks.com/dns.htm).
• Have an available power socket next to your

router.
• An ethernet cable to connect your server to

the router.

The instructions on this guide were run on a
Debian Stretch distribution.

Installing Apache

The Apache HTTP server is a free and open-
source web server software and it has been
around since 1995, being the most widely used
server software in the world. Because of this,
documentation is plentiful and the support
community is very large, meaning that help is
quite easy to get for any of your web server
issues.
For this reason, Apache has been selected for
this guide.

There are, of course, other web server
software available, the most popular of which
being Nginx. Nginx, which is also free and
open-source software, arrived on the scene
circa 2004, and it also became a favourite for
its resource efficiency.

If you want to geek out further about the
differences between Apache and Nginx, this
article (https://www.digitalocean.com/
community/tutorials/apache-vs-nginx-practical-
considerations) will give you an overview.

So, without further ado, open a terminal
window and let’s get started:

First, make sure you update your packages
list:

$ sudo apt update

Then, install the Apache HTTP server
software:

$ sudo apt install apache2

If all went well, Apache should have been
started immediately after installation. To
double check this, run:

$ sudo systemctl status apache2

Example output:

Homebrewserver.club

file:///home/mb/Documents/ontwerper/projects/NOOO2/Homebrewserver.club/demystifying-ssh.html
file:///home/mb/Documents/ontwerper/projects/NOOO2/Homebrewserver.club/demystifying-ssh.html
file:///home/mb/Documents/ontwerper/projects/NOOO2/Homebrewserver.club/demystifying-ssh.html
file:///home/mb/Documents/ontwerper/projects/NOOO2/Homebrewserver.club/demystifying-ssh.html
https://computer.howstuffworks.com/dns.htm
https://computer.howstuffworks.com/dns.htm
https://computer.howstuffworks.com/dns.htm
https://computer.howstuffworks.com/dns.htm
https://www.digitalocean.com/community/tutorials/apache-vs-nginx-practical-considerations
https://www.digitalocean.com/community/tutorials/apache-vs-nginx-practical-considerations
https://www.digitalocean.com/community/tutorials/apache-vs-nginx-practical-considerations
https://www.digitalocean.com/community/tutorials/apache-vs-nginx-practical-considerations
https://www.digitalocean.com/community/tutorials/apache-vs-nginx-practical-considerations
https://www.digitalocean.com/community/tutorials/apache-vs-nginx-practical-considerations
https://www.digitalocean.com/community/tutorials/apache-vs-nginx-practical-considerations

● apache2.service - The Apache HTTP Server
 Loaded: loaded (/lib/systemd/system/
apache2.service; enabled; vendor preset:
 Active: active (running) since Sat 2019-06-22
21:29:51 UTC; 6s ago
 Main PID: 18398 (apache2)
 CPU: 573ms
 CGroup: /system.slice/apache2.service
 ├─18398 /usr/sbin/apache2 -k start
 ├─18402 /usr/sbin/apache2 -k start
 ├─18403 /usr/sbin/apache2 -k start
 ├─18404 /usr/sbin/apache2 -k start
 ├─18405 /usr/sbin/apache2 -k start
 └─18406 /usr/sbin/apache2 -k start

Jun 22 21:29:50 supermuch systemd[1]: Starting The
Apache HTTP Server...
Jun 22 21:29:51 supermuch systemd[1]: Started The
Apache HTTP Server.

Configuration Time

You can find Apache’s configuration files in the
following location: /etc/apache2/sites-
available.

The 000-default.conf file should look a little
something like this:

ServerAdmin webmaster@localhost
<VirtualHost *:80>

 # ServerName example.org

 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/html

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log
combined

</VirtualHost>

For ease of use, and in case you would like to
have several websites/services running behind
a single server, copy this file into another,
easily identifiable one, for example, calling it
something like “mydomain.conf”.

$ sudo cp 000-default.conf mydomain.conf

Using your favourite text editor, uncomment
the ServerName line and change it to reflect
your domain name:

ServerAdmin webmaster@localhost
<VirtualHost *:80>
 ServerName mydomain.org

 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/html

 ErrorLog ${APACHE_LOG_DIR}/
mydomain.error.log
 CustomLog ${APACHE_LOG_DIR}/
mydomain.access.log combined

</VirtualHost>

Enable this configuration by running:

$ sudo a2ensite mydomain.org

Restart Apache to load the new configuration:

$ sudo service apache2 restart

Homebrewserver.club

HTTPS

HTTPS, which stands for hypertext transfer
protocol secure, is an extension of the HTTP
protocol. As its name suggests, it adds a layer
of security to the data exchanged between
client and server. By adding an encryption
layer to the exchanged packets, it seeks to
avoid man-in-the-middle attacks,
eavesdropping, etc. While HTTP uses port 80
by default, HTTPS uses port 443.

As part of its bigger goal to “encrypt the entire
Internet”, the Electronic Frontier Foundation
(https://certbot.eff.org/about/) developed
Certbot, a free and open source tool for
automating the server-side deployment of
Let’s Encrypt Certificates (https://
letsencrypt.org/), thus enabling HTTPS.

Let’s get down to it! Again, these instructions
are specific to Debian 9 (Stretch), but detailed
instructions for installation on other distros
can be found on Certbot’s website (https://
certbot.eff.org/instructions).

First, add backports to your packages list and
update it:

$ echo deb http://deb.debian.org/debian stretch-
backports main | sudo tee -a /etc/apt/sources.list
&& sudo apt update

Now, install Certbot:

$ sudo apt install certbot python-certbot-apache -t
stretch-backports

Run Certbot to get the right certificates for
your domain:

$ sudo certbot certonly -d myserver.org

After following the process, and if all went
well, you should now see the following
message:

- Congratulations! Your certificate and chain have
been saved at:
 /etc/letsencrypt/live/mydomain.org/fullchain.pem
 Your key file has been saved at:
 /etc/letsencrypt/live/mydomain.org/privkey.pem
 Your cert will expire on 2019-09-24. To obtain a
new or tweaked
 version of this certificate in the future,
simply run certbot
 again. To non-interactively renew *all* of your
certificates, run
 "certbot renew"
 - If you like Certbot, please consider supporting
our work by:

 Donating to ISRG / Let's Encrypt: https://
letsencrypt.org/donate
 Donating to EFF: https://
eff.org/donate-le

Now, it is time to edit your /etc/apache2/sites-
available/mydomain.conf file accordingly:

Homebrewserver.club

https://certbot.eff.org/about/
https://certbot.eff.org/about/
https://certbot.eff.org/about/
https://certbot.eff.org/about/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://certbot.eff.org/instructions
https://certbot.eff.org/instructions
https://certbot.eff.org/instructions
https://certbot.eff.org/instructions

<VirtualHost *:80>
 ServerName mydomain.org

 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/html

 ErrorLog ${APACHE_LOG_DIR}/
mydomain.error.log
 CustomLog ${APACHE_LOG_DIR}/
mydomain.access.log combined
</VirtualHost>

#NEW CONFIG STARTS HERE
<IfModule mod_ssl.c>
<VirtualHost *:443>
 ServerName mydomain.org

 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/html

 ErrorLog ${APACHE_LOG_DIR}/
mydomain.error.log
 CustomLog ${APACHE_LOG_DIR}/
mydomain.access.log combined

 SSLEngine on
 #PATH TO YOUR CERTIFICATES (note: don't forget
to replace mydomain.org with your actual domain
name!)
 SSLCertificateFile /etc/letsencrypt/live/
mydomain.org/fullchain.pem
 SSLCertificateKeyFile /etc/letsencrypt/live/
mydomain.org/privkey.pem
</VirtualHost>
</IfModule>

In case you didn’t notice, there is now an if
statement that evaluates true in case a certain
module is present. In this case, it evaluates to
true if mod_ssl (http://www.modssl.org/) is
present. Apache modules (https://
en.wikipedia.org/wiki/
List_of_Apache_modules) can be installed as
following:

$ sudo a2enmod modulename

To verify which modules are already running
on your server, type:

$ sudo apache2ctl -M

If the required ssl_module is not listed, run:

$ sudo a2enmod ssl

Certificate renewal

Your certificates expire after a period of time.
You can, however, automate renewal by adding
a cron job (https://www.ostechnix.com/a-
beginners-guide-to-cron-jobs/) that schedules
when the specific renewal command should be
run.

Start by running:

sudo crontab -e

Add the following:

5 55 0 * 5 /usr/bin/certbot renew

This means the certificates will be renewed
every week on Friday at 05:55. You can of

Homebrewserver.club

http://www.modssl.org/
http://www.modssl.org/
https://en.wikipedia.org/wiki/List_of_Apache_modules
https://en.wikipedia.org/wiki/List_of_Apache_modules
https://en.wikipedia.org/wiki/List_of_Apache_modules
https://en.wikipedia.org/wiki/List_of_Apache_modules
https://en.wikipedia.org/wiki/List_of_Apache_modules
https://en.wikipedia.org/wiki/List_of_Apache_modules
https://www.ostechnix.com/a-beginners-guide-to-cron-jobs/
https://www.ostechnix.com/a-beginners-guide-to-cron-jobs/
https://www.ostechnix.com/a-beginners-guide-to-cron-jobs/
https://www.ostechnix.com/a-beginners-guide-to-cron-jobs/

course edit these times according to your
preferences! Save your changes and exit the
editor.
Time to restart Apache and load all of these
changes!

index.html

At this point, when typing https://
mydomain.org into your browser, you should
be greeted with a page that looks a little
something like this:

If you cd into your /var/www/html folder, you
will find this default index.html. As
recommended by this page itself, you should
edit this file before continuing operations on
your webserver.
Open it on your favourite text editor and let’s
get started on a bare-bones “Hello Homebrew
World”! webpage.

<!doctype html>

<html lang="en">
<head>
 <meta charset="utf-8">
 <title>My first homebrewed webpage</title>
</head>

<body>
 <h1>Hello Homebrew World!</h1>
</body>
</html>

Open your browser again and savour the fruits
of your hard work.

That was it! Now you are ready to have hours
of endless fun sailing the vast sea of HTML,
CSS, JavaScript, etc.

Homebrewserver.club

	Introduction
	Some background knowledge
	Requirements
	Installing Apache
	Configuration Time
	HTTPS
	Certificate renewal

	index.html

